On Modules Over Group Rings

Yiqiang Zhou

Memorial University of Newfoundland

(Joint work with Tamer Kosan, Tsiu-Kwen Lee) Noncommutative Rings and Their Applications LENS July 1-4, 2013

Let M be a right module over a ring R and let G be a group. Let MG be the set of all formal finite sums of the form $\sum_{g \in G} m_g g$ where $m_g \in M$. For $\sum m_g g$, $\sum_{g \in G} n_g g \in MG$ and $\sum r_g g \in RG$, by writing $\sum m_g g = \sum n_g g$ we mean that $m_g = n_g$ for all $g \in G$. The sum and the scalar product are defined as follows:

$$\sum_{g \in G} m_g g + \sum_{g \in G} n_g g = \sum_{g \in G} (m_g + n_g) g$$
$$\left(\sum_{g \in G} m_g g\right) \left(\sum_{g \in G} r_g g\right) = \sum_{g \in G} k_g g, \text{ where } k_g = \sum_{hh' = g} m_h r_{h'}.$$

Definition 1

Let *M* be a right module over a ring *R* and let *G* be a group. Let *MG* be the set of all formal finite sums of the form $\sum_{g \in G} m_g g$ where $m_g \in M$. For $\sum m_g g, \sum_{g \in G} n_g g \in MG$ and $\sum r_g g \in RG$, by writing $\sum m_g g = \sum n_g g$ we mean that $m_g = n_g$ for all $g \in G$. The sum and the scalar product are defined as follows:

$$\sum_{g \in G} m_g g + \sum_{g \in G} n_g g = \sum_{g \in G} (m_g + n_g) g$$
$$\left(\sum_{g \in G} m_g g\right) \left(\sum_{g \in G} r_g g\right) = \sum_{g \in G} k_g g, \text{ where } k_g = \sum_{hh' = g} m_h r_{h'}.$$

Definition 1

Let *M* be a right module over a ring *R* and let *G* be a group. Let *MG* be the set of all formal finite sums of the form $\sum_{g \in G} m_g g$ where $m_g \in M$. For $\sum m_g g$, $\sum_{g \in G} n_g g \in MG$ and $\sum r_g g \in RG$, by writing $\sum m_g g = \sum n_g g$ we mean that $m_g = n_g$ for all $g \in G$. The sum and the scalar product are defined as follows:

$$\sum_{g \in G} m_g g + \sum_{g \in G} n_g g = \sum_{g \in G} (m_g + n_g)g$$
$$\left(\sum_{g \in G} m_g g\right) \left(\sum_{g \in G} r_g g\right) = \sum_{g \in G} k_g g, \text{ where } k_g = \sum_{hh' = g} m_h r_{h'}.$$

Definition 1

Let *M* be a right module over a ring *R* and let *G* be a group. Let *MG* be the set of all formal finite sums of the form $\sum_{g \in G} m_g g$ where $m_g \in M$. For $\sum m_g g, \sum_{g \in G} n_g g \in MG$ and $\sum r_g g \in RG$, by writing $\sum m_g g = \sum n_g g$ we mean that $m_g = n_g$ for all $g \in G$. The sum and the scalar product are defined as follows:

$$\sum_{g \in G} m_g g + \sum_{g \in G} n_g g = \sum_{g \in G} (m_g + n_g)g$$
$$\left(\sum_{g \in G} m_g g\right) \left(\sum_{g \in G} r_g g\right) = \sum_{g \in G} k_g g, \text{ where } k_g = \sum_{hh'=g} m_h r_{h'}.$$

Definition 1

Example 2

- If M = R is the ring itself, then MG coincides with the group ring RG.
- If M = I is a right ideal of R, then MG = IG is a right ideal of RG.
- If G is the infinite cyclic group, then RG = R[x⁻¹, x] is the Laurent polynomial ring and MG = M[x⁻¹, x] is the Laurent polynomial module over R[x⁻¹, x].

- Study module properties of the module $(MG)_{RG}$, aiming to extend the known results on ring properties of RG.
- Study module properties of the module $(MG)_{RG}$, which will not be considered for RG.

- Study module properties of the module $(MG)_{RG}$, aiming to extend the known results on ring properties of RG.
- Study module properties of the module $(MG)_{RG}$, which will not be considered for RG.

The augmentation map

With $m \in M$ being identified with $m \cdot 1 \in MG$ (where 1 is the identity of G), M is an R-submodule of MG. The map

$$\epsilon_M: MG \to M, \ \sum m_g g \mapsto \sum m_g,$$

is an *R*-homomorphism. The kernel of ϵ_M is denoted by $\Delta(MG)$. Thus, $\epsilon := \epsilon_R : RG \to R$ is the usual *augmentation* map.

Lemma 3

Let MG be the group module of G by M over RG. Then:

- For any $x \in MG$ and any $\alpha \in RG$, $\epsilon_M(x\alpha) = \epsilon_M(x)\epsilon(\alpha)$. In particular, ϵ_M is an *R*-homomorphism.
- ② $\Delta(MG) = \{ \sum m_g(g-1) : g \in G, m_g \in M \}$ is an RG-submodule of MG.

The augmentation map

With $m \in M$ being identified with $m \cdot 1 \in MG$ (where 1 is the identity of G), M is an R-submodule of MG. The map

$$\epsilon_M: MG \to M, \ \sum m_g g \mapsto \sum m_g,$$

is an *R*-homomorphism. The kernel of ϵ_M is denoted by $\Delta(MG)$. Thus, $\epsilon := \epsilon_R : RG \to R$ is the usual *augmentation* map.

Lemma 3

Let MG be the group module of G by M over RG. Then:

- For any $x \in MG$ and any $\alpha \in RG$, $\epsilon_M(x\alpha) = \epsilon_M(x)\epsilon(\alpha)$. In particular, ϵ_M is an *R*-homomorphism.
- $\Delta(MG) = \{ \sum m_g(g-1) : g \in G, m_g \in M \}$ is an *RG*-submodule of *MG*.

Basic facts

• Let $\{M_i : i \in I\}$ be a family of right *R*-modules and let *G* be a group. Then $((\Phi, M)C) \sim (\Phi, MC)$

$$\left(\left(\bigoplus_{i\in I}M_i\right)G\right)_{RG}\cong\left(\bigoplus_{i\in I}M_iG\right)_{RG}$$

- An R-module M_R is projective if and only if (MG)_{RG} is projective.
- If $Y \cap \Delta(MG) = 0$ for some nonzero submodule Y of $(MG)_{RG}$, then G is a finite group.

Basic facts

• Let $\{M_i : i \in I\}$ be a family of right R-modules and let G be a group. Then

$$\left(\left(\bigoplus_{i\in I}M_i\right)G\right)_{RG}\cong \left(\bigoplus_{i\in I}M_iG\right)_{RG}$$

- An R-module M_R is projective if and only if (MG)_{RG} is projective.
- If Y ∩ Δ(MG) = 0 for some nonzero submodule Y of (MG)_{RG}, then G is a finite group.

Basic facts

Let {M_i : i ∈ I} be a family of right R-modules and let G be a group. Then

$$\left(\left(\bigoplus_{i\in I}M_i\right)G\right)_{RG}\cong \left(\bigoplus_{i\in I}M_iG\right)_{RG}$$

- An R-module M_R is projective if and only if (MG)_{RG} is projective.
- If $Y \cap \Delta(MG) = 0$ for some nonzero submodule Y of $(MG)_{RG}$, then G is a finite group.

A module M_R is called *semisimple* if M_R is a direct sum of simple *R*-modules, or equivalently if every submodule of M_R is a direct summand. A ring *R* is semisimple Artinian if and only if *R* is a semisimple right (or left) module over *R*.

Maschke's Theorem

Let G be a finite group. Then the group ring RG is a semisimple Artinian ring if and only if R is a semisimple Artinian ring and |G| is invertible in R.

A module M_R is called *semisimple* if M_R is a direct sum of simple *R*-modules, or equivalently if every submodule of M_R is a direct summand. A ring *R* is semisimple Artinian if and only if *R* is a semisimple right (or left) module over *R*.

Maschke's Theorem

Let G be a finite group. Then the group ring RG is a semisimple Artinian ring if and only if R is a semisimple Artinian ring and |G| is invertible in R.

The generalized Maschke's Theorem

The group ring RG is a semisimple Artinian ring if and only if R is a semisimple Artinian ring and G is a finite group whose order is invertible in R. [I.G. Cornell, 1963]

Theorem 1 (Kosan-Lee-Z)

- MG is a semisimple module over RG.
- M_R is a semisimple module and G is a finite group whose order is invertible in End_R(M).

The generalized Maschke's Theorem

The group ring RG is a semisimple Artinian ring if and only if R is a semisimple Artinian ring and G is a finite group whose order is invertible in R. [I.G. Cornell, 1963]

Theorem 1 (Kosan-Lee-Z)

- MG is a semisimple module over RG.
- M_R is a semisimple module and G is a finite group whose order is invertible in $\operatorname{End}_R(M)$.

Injective modules

A module M_R is called *injective* if, for any module Y_R and any R-submodule X of Y, every R-homomorphism $X \to M$ can be extended to an R-homomorphism $Y \to M$. By the Baer Criterion, M_R is injective if and only if, for any right ideal I of R, every R-homomorphism $I \to M$ can be extended to an R-homomorphism $R_R \to M$. The ring R is called right self-injective if the module R_R is injective.

I.G. Connell, 1963

For a finite group G, the group ring RG is right self-injective if and only if R is right self-injective.

G. Renault, 1971

If RG is right self-injective, then G is finite.

Injective modules

A module M_R is called *injective* if, for any module Y_R and any R-submodule X of Y, every R-homomorphism $X \to M$ can be extended to an R-homomorphism $Y \to M$. By the Baer Criterion, M_R is injective if and only if, for any right ideal I of R, every R-homomorphism $I \to M$ can be extended to an R-homomorphism $R_R \to M$. The ring R is called right self-injective if the module R_R is injective.

I.G. Connell, 1963

For a finite group G, the group ring RG is right self-injective if and only if R is right self-injective.

G. Renault, 1971

If RG is right self-injective, then G is finite.

Injective modules

A module M_R is called *injective* if, for any module Y_R and any R-submodule X of Y, every R-homomorphism $X \to M$ can be extended to an R-homomorphism $Y \to M$. By the Baer Criterion, M_R is injective if and only if, for any right ideal I of R, every R-homomorphism $I \to M$ can be extended to an R-homomorphism $R_R \to M$. The ring R is called right self-injective if the module R_R is injective.

I.G. Connell, 1963

For a finite group G, the group ring RG is right self-injective if and only if R is right self-injective.

G. Renault, 1971

If RG is right self-injective, then G is finite.

Theorem (Connell - Renault)

The group ring RG is right self-injective if and only if R is right self-injective and G is finite.

Theorem 2 (Kosan-Lee-Z)

Let M_R be a nonzero module and let G be a group. Then $(MG)_{RG}$ is injective if and only if M_R is injective and G is finite.

Theorem (Connell - Renault)

The group ring RG is right self-injective if and only if R is right self-injective and G is finite.

Theorem 2 (Kosan-Lee-Z)

Let M_R be a nonzero module and let G be a group. Then $(MG)_{RG}$ is injective if and only if M_R is injective and G is finite.

FP-injective modules

A module M_R is called *FP-injective* if, for any finitely generated submodule *K* of a free *R*-module *F*, every *R*-homomorphism $K \rightarrow M$ can be extended to an *R*-homomorphism $F \rightarrow M$. A ring *R* is called *right FP-injective* if R_R is *FP*-injective.

G.A. Garkusha, 1999

The group ring RG is right FP-injective if and only if R is right FP-injective and G is locally finite.

Theorem 3 (Kosan-Lee-Z)

Let M_R be a nonzero module and let G be a group. Then $(MG)_{RG}$ is FP-injective if and only if M_R is FP-injective and G is locally finite.

FP-injective modules

A module M_R is called *FP-injective* if, for any finitely generated submodule *K* of a free *R*-module *F*, every *R*-homomorphism $K \rightarrow M$ can be extended to an *R*-homomorphism $F \rightarrow M$. A ring *R* is called *right FP-injective* if R_R is *FP*-injective.

G.A. Garkusha, 1999

The group ring RG is right FP-injective if and only if R is right FP-injective and G is locally finite.

Theorem 3 (Kosan-Lee-Z)

Let M_R be a nonzero module and let G be a group. Then $(MG)_{RG}$ is FP-injective if and only if M_R is FP-injective and G is locally finite.

FP-injective modules

A module M_R is called *FP-injective* if, for any finitely generated submodule *K* of a free *R*-module *F*, every *R*-homomorphism $K \rightarrow M$ can be extended to an *R*-homomorphism $F \rightarrow M$. A ring *R* is called *right FP-injective* if R_R is *FP*-injective.

G.A. Garkusha, 1999

The group ring RG is right FP-injective if and only if R is right FP-injective and G is locally finite.

Theorem 3 (Kosan-Lee-Z)

Let M_R be a nonzero module and let G be a group. Then $(MG)_{RG}$ is FP-injective if and only if M_R is FP-injective and G is locally finite.

A ring *R* is called von Neumann regular if, for each $a \in R$, a = aba for some $b \in R$.

Auslander, 1957; Connell, 1963; McLaughlin, 1958

The group ring RG is von Neumann regular if and only if R is von Neumann regular, G is locally finite, and the order of any finite subgroup of G is invertible in R.

A ring *R* is called von Neumann regular if, for each $a \in R$, a = aba for some $b \in R$.

Auslander, 1957; Connell, 1963; McLaughlin, 1958

The group ring RG is von Neumann regular if and only if R is von Neumann regular, G is locally finite, and the order of any finite subgroup of G is invertible in R.

Following [Zelmanowitz, 1972], a module M_R is called *regular* if for any $m \in M$, m = mf(m) for some $f \in \text{Hom}_R(M, R)$. Thus, a ring R is von Neumann regular if and only if R_R is a regular module.

Theorem 4 (Kosan-Lee-Z)

- MG is a regular module over RG.
- 2 M_R is regular, G is locally finite and the order of each finite subgroup of G is invertible in End_R(M).

Following [Zelmanowitz, 1972], a module M_R is called *regular* if for any $m \in M$, m = mf(m) for some $f \in \text{Hom}_R(M, R)$. Thus, a ring R is von Neumann regular if and only if R_R is a regular module.

Theorem 4 (Kosan-Lee-Z)

- **1** *MG* is a regular module over RG.
- **2** M_R is regular, G is locally finite and the order of each finite subgroup of G is invertible in $\operatorname{End}_R(M)$.

Following [Zelmanowitz, 1972], a module M_R is called *regular* if for any $m \in M$, m = mf(m) for some $f \in \text{Hom}_R(M, R)$. Thus, a ring R is von Neumann regular if and only if R_R is a regular module.

Theorem 4 (Kosan-Lee-Z)

- **1** *MG* is a regular module over RG.
- **2** M_R is regular, G is locally finite and the order of each finite subgroup of G is invertible in $\operatorname{End}_R(M)$.

- The group ring *RG* is right Artinian if and only if *R* is right Artinian and *G* is finite. [G. Connell, 1963]
- The group ring *RG* is perfect if and only if *R* is perfect and *G* is finite. [G. Renault 1971; S.M. Woods, 1971]
- The group ring RG is right pure-injective if and only if R is right pure-injective and G is finite [W. Zimmermann, 1982]

Question

Characterize when (MG)_{RG} is Artinin (resp., perfect or pure-injective).

Question

Characterize when (MG)_{RG} is flat.

- The group ring *RG* is right Artinian if and only if *R* is right Artinian and *G* is finite. [G. Connell, 1963]
- The group ring *RG* is perfect if and only if *R* is perfect and *G* is finite. [G. Renault 1971; S.M. Woods, 1971]
- The group ring RG is right pure-injective if and only if R is right pure-injective and G is finite [W. Zimmermann, 1982]

Question

Characterize when (MG)_{RG} is Artinin (resp., perfect or pure-injective).

Question

Characterize when (MG)_{RG} is flat.

- The group ring *RG* is right Artinian if and only if *R* is right Artinian and *G* is finite. [G. Connell, 1963]
- The group ring *RG* is perfect if and only if *R* is perfect and *G* is finite. [G. Renault 1971; S.M. Woods, 1971]
- The group ring RG is right pure-injective if and only if R is right pure-injective and G is finite [W. Zimmermann, 1982]

Question

Characterize when (MG)_{RG} is Artinin (resp., perfect or pure-injective).

Question

Characterize when (MG)_{RG} is flat.

- The group ring *RG* is right Artinian if and only if *R* is right Artinian and *G* is finite. [G. Connell, 1963]
- The group ring *RG* is perfect if and only if *R* is perfect and *G* is finite. [G. Renault 1971; S.M. Woods, 1971]
- The group ring RG is right pure-injective if and only if R is right pure-injective and G is finite [W. Zimmermann, 1982]

Question

Characterize when $(MG)_{RG}$ is Artinin (resp., perfect or pure-injective).

Question

Characterize when $(MG)_{RG}$ is flat.

- The group ring *RG* is right Artinian if and only if *R* is right Artinian and *G* is finite. [G. Connell, 1963]
- The group ring *RG* is perfect if and only if *R* is perfect and *G* is finite. [G. Renault 1971; S.M. Woods, 1971]
- The group ring RG is right pure-injective if and only if R is right pure-injective and G is finite [W. Zimmermann, 1982]

Question

Characterize when $(MG)_{RG}$ is Artinin (resp., perfect or pure-injective).

Question

Characterize when $(MG)_{RG}$ is flat.

Thank You!

Recall that a right module M over ring R is called algebraically compact, also called pure-injective, if each system of equations $\sum_{i \in I} X_i a_{ij} = m_j$, $j \in J$, with $a_{ij} \in R$ and $m_j \in M$, which is finitely solvable in M^I , has a solution.